Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 24

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Investigation of random beam trips in a linear accelerator at the Japan Proton Accelerator Research Complex for the development of an accelerator-driven nuclear transmutation system

Takei, Hayanori

Journal of Nuclear Science and Technology, 14 Pages, 2023/00

 Times Cited Count:0 Percentile:0.18(Nuclear Science & Technology)

In the proton linear accelerator (linac), the proton beam is unexpectedly interrupted due to the electrical discharge originating from the radio frequency, failure of the device/equipment, or other factors. Do these beam trips occur randomly? Conventionally, it has been implicitly assumed that beam trips occur randomly. In this study, we investigated whether beam trips in the linac of the Japan Proton Accelerator Research Complex (J-PARC) occur randomly to estimate the beam trip frequency in a superconducting proton linac for an accelerator-driven nuclear transmutation system. First, the J-PARC linac was classified into five subsystems. Then, the reliability function for the operation time in each subsystem was obtained using the Kaplan--Meier estimation, a reliability engineering methods. Using this reliability function, the randomness of beam trips was examined. Analysis of five-year operational data for five subsystems of the J-PARC linac showed that beam trips occurred randomly in some subsystems. However, beam trips did not occur randomly in many subsystems of the proton linac, including the ion source and the acceleration cavity, the primary subsystems of the proton linac.

JAEA Reports

Measurement of nuclide production cross-sections in high-energy proton-induced spallation reactions at J-PARC

Nakano, Keita; Matsuda, Hiroki*; Meigo, Shinichiro; Iwamoto, Hiroki; Takeshita, Hayato*; Maekawa, Fujio

JAEA-Research 2021-014, 25 Pages, 2022/03

JAEA-Research-2021-014.pdf:2.1MB

For the development of accelerator-driven transmutation system (ADS), measurement of nuclide production cross-sections in proton-induced reactions on $$^9$$Be, C, $$^{27}$$Al, $$^{45}$$Sc, and V have been performed. The measured data are compared with the calculations by the latest nuclear reaction models and with the nuclear data library to investigate the reproducibilities.

Journal Articles

Evaluation of heat removal during the failure of the core cooling for new critical assembly

Eguchi, Yuta; Sugawara, Takanori; Nishihara, Kenji; Tazawa, Yujiro; Tsujimoto, Kazufumi

Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 8 Pages, 2018/07

In order to investigate the basic neutronics characteristics of the accelerator-driven subcritical system (ADS), JAEA has a plan to construct a new critical assembly in the J-PARC project, Transmutation Physics Experimental Facility (TEF-P). This study aims to evaluate the natural cooling characteristics of TEF-P core which has large decay heat by minor actinide (MA) fuel, and to achieve a design that does not damage the core and the fuels during the failure of the core cooling system. In the evaluation of the TEF-P core temperature, empty rectangular lattice tube outer of the core has a significant effect on the heat transfer characteristics. The experiments by using the mockup device were performed to validate the heat transfer coefficient and experimental results were obtained. By using the obtained experimental results, the three-dimensional heat transfer analysis of TEF-P core were performed, and the maximum core temperature was obtained, 294$$^{circ}$$C. This result shows TEF-P core temperature would be less than 327$$^{circ}$$C that the design criterion of temperature.

Journal Articles

Design of 250kW LBE spallation target for the Japan Proton Accelerator Research Complex (J-PARC)

Sasa, Toshinobu; Saito, Shigeru; Obayashi, Hironari; Sugawara, Takanori; Wan, T.; Yamaguchi, Kazushi*; Yoshimoto, Hidemitsu

NEA/CSNI/R(2017)2 (Internet), p.111 - 116, 2017/06

Japan Atomic Energy Agency (JAEA) proposes to reduce the environmental impact caused from high-level radioactive waste by using Accelerator-driven system (ADS). To realize ADS, JAEA plans to build the Transmutation Experimental Facility (TEF) within the framework of J-PARC project. For the JAEA-proposed ADS, lead-bismuth eutectic alloy (LBE) is adopted as a coolant for subcritical core and spallation target. By using TEF in J-PARC, we are planning to solve technical difficulties for LBE utilization by completion of the data for the design of ADS. The 250kW LBE spallation target will be located in TEF facility to prepare material irradiation database. Various R&Ds for important technologies required to build the facilities are investigated such as oxygen content control, instruments development, remote handling techniques for target maintenance, and spallation target design. The large scale LBE loops for 250kW target mock up and material corrosion studies are also manufactured and ready for various experiments. The latest status of 250kW LBE spallation target optimization will be described in the presentation.

JAEA Reports

Collaboration between SCK$$cdot$$CEN and JAEA for Partitioning and Transmutation through Accelerator-Driven System

Working Group for Collaboration between SCK$$cdot$$CEN and JAEA for P&T through ADS

JAEA-Review 2017-003, 44 Pages, 2017/03

JAEA-Review-2017-003.pdf:5.35MB

This technical report reviews Research and Development (R&D) programs for the Partitioning and Transmutation (P&T) technology through Accelerator-Driven System (ADS) at Studiecentrum voor Kernenergie/Centre d'Etude de l'$'e$nergie Nucl$'e$aire (SCK$$cdot$$CEN) and Japan Atomic Energy Agency (JAEA). The results obtained in the present Collaboration Arrangement between the two organizations for the ADS are also summarized, and possible further collaborations and mutual realizations in the future are sketched.

JAEA Reports

Thermal design study of lead-bismuth cooled accelerator driven system, 1; Study on thermal hydraulic behavior under normal operation condition

Akimoto, Hajime; Sugawara, Takanori

JAEA-Data/Code 2016-008, 87 Pages, 2016/09

JAEA-Data-Code-2016-008.pdf:15.62MB

Thermal hydraulic behavior in a lead-bismuth cooled accelerator driven system (ADS) is analyzed under normal operation condition. Input data for the ADS version of J-TRAC code have been constructed to integrate the conceptual design. The core part of the ADS is modeled in detail to evaluate the core radial power profile effect on the core cooling. As the result of the analyses, the followings are found; (1) Both maximum clad temperature and fuel temperature are below the design limits. (2) The radial power profile has little effect on the coolant flow distribution among fuel assemblies. (3) The radial power profile has little effect on the heat transfer coefficients along fuel rods. (4) The thermal hydraulic behaviors along four steam generators are identical. The thermal hydraulic behaviors along two pumps are also identical. A fast running input data is developed by the simplification of the detailed input data based on the findings mentioned above.

JAEA Reports

Proceedings of the first topical meeting on Asian network for accelerator-driven systems and nuclear transmutation technology

Sasa, Toshinobu

JAEA-Review 2015-042, 213 Pages, 2016/03

JAEA-Review-2015-042.pdf:166.0MB

The first topical meeting on Asian Network for Accelerator-driven System (ADS) and Nuclear Transmutation Technology (NTT) was held on 26-27 October 2015 at the J-PARC Center, Japan Atomic Energy Agency, Japan. The meeting was an optional one in-between the regular meeting, which will be held in every second year. Instead of the regular meeting, which covers all research fields for ADS and NTT, such as accelerator, spallation target, subcritical reactor, fuel, and material, this topical meeting is focused on the specific topic to make technical discussions more deeply. In this meeting, the technology for lead-bismuth eutectic alloy was selected as one of the hot issues in the world and had deep discussions with specialists in Asian countries. Through the discussion, the importance of cooperation in Again region is recognized to solve the issues for application of LBE. This report summarizes all presentation materials discussed in the meeting.

Journal Articles

J-PARC transmutation experimental facility programme

Sasa, Toshinobu; Takei, Hayanori; Saito, Shigeru; Obayashi, Hironari; Nishihara, Kenji; Sugawara, Takanori; Iwamoto, Hiroki; Yamaguchi, Kazushi; Tsujimoto, Kazufumi; Oigawa, Hiroyuki

NEA/CSNI/R(2015)2 (Internet), p.85 - 91, 2015/06

Nuclear transmutation got much interested as an effective option of nuclear waste management. Japan Atomic Energy Agency (JAEA) proposes the transmutation of minor actinides (MA) by accelerator-driven system (ADS) using lead-bismuth alloy (Pb-Bi). To obtain the data for ADS design, JAEA plans to build a Transmutation Experimental Facility (TEF) in the J-PARC project. TEF consists of two buildings, an ADS target test facility (TEF-T) with 400MeV-250kW Pb-Bi target, and a Transmutation Physics Experimental Facility (TEF-P), which set up a fast critical assembly driven by low power proton beam with MA fuel. In TEF-T, irradiation test for materials, and engineering tests for Pb-Bi target operation will be performed. Various research plans such as nuclear data measurements have been proposed and layout of the experimental hall are underway. In the presentation, roadmap to establish the ADS transmutor and latest design activities for TEF construction will be summarized.

JAEA Reports

Development of thermal-hydraulic design code for transmutation system with lead-bismuth cooled accelerator driven reactor

Akimoto, Hajime

JAEA-Data/Code 2014-031, 75 Pages, 2015/03

JAEA-Data-Code-2014-031.pdf:37.23MB

A thermal-hydraulic analysis code for transmutation system with lead-bismuth cooled accelerator-driven system (ADS) has been developed using the Japanese-version of Transient Reactor Analysis Code (J-TRAC) as the framework to apply the design studies of ADS. To identify the required capabilities of the thermal-hydraulic analysis code for ADS, previous thermal-hydraulic analyses of light water reactors, sodium-cooled fast reactor and ADS have been surveyed. To make up for insufficient capabilities of the J-TRAC code as a thermal-hydraulic analysis code of ADS, physical properties of lead-bismuth eutectic (LBE), argon gas and nitride nuclear fuel were implemented to the J-TRAC code. It was confirmed that the implemented capabilities worked as expected through verification calculations on (1) single-phase LBE flow, (2) heat transfer in a fuel assembly, and (3) heat transfer in a steam generator.

Journal Articles

A Study on accelerator-driven transmutation system in JAEA

Sasa, Toshinobu

AAPPS Bulletin, 24(5), p.13 - 17, 2014/10

To reduce the burden of radiological nuclides contained in spent nuclear fuel, Partitioning-Transmutation (P-T) technology is noted as an option for nuclear waste management in the new national strategic energy policy. As for the system for waste transmutation, an accelerator-driven system is desirable as a dedicated transmutor. To perform basic studies for an accelerator-driven system, the Japan Atomic Energy Agency has promoted the design of the Transmutation Experimental Facility within the framework of the J-PARC project. A lead-bismuth spallation target, which is bombarded with 400 MeV - 250 kW protons, and a low-power subcritical reactor will be installed in the facility. Construction will start within a few years after the national review of P-T technology.

Journal Articles

Present status and future perspective of research and development on partitioning and transmutation technology at JAERI

Oigawa, Hiroyuki; Minato, Kazuo; Kimura, Takaumi; Morita, Yasuji; Arai, Yasuo; Nakayama, Shinichi; Nishihara, Kenji

Proceedings of International Conference on Nuclear Energy System for Future Generation and Global Sustainability (GLOBAL 2005) (CD-ROM), 6 Pages, 2005/10

JAERI is engaging in the R&D on the Double-strata Fuel Cycle concept in accordance with the results of the check and review on the Partitioning and Transmutation (PT) technology made by the Atomic Energy Commission of Japan in 2000. As for the partitioning process, after the establishment of the "4-group Partitioning Process Concept", an innovative concept called ARTIST is also being studied. As for the fuel technology, minor actinide nitrides such as NpN and AmN were synthesized and their material properties have been measured. To reprocess the irradiated fuel, the pyrochemical process has been studied. The R&D of the accelerator-driven transmutation system are in progress for an accelerator, lead-bismuth, and a subcritical reactor. In addition, JAERI has started the high-intensity proton accelerator project (J-PARC), which includes the Transmutation Experimental Facility (TEF) as the Phase-II. The impact of PT technology on the backend of the nuclear energy utilization is also being discussed.

Journal Articles

R&D activities on accelerator-driven transmutation system in JAERI

Oigawa, Hiroyuki; Tsujimoto, Kazufumi; Kikuchi, Kenji; Kurata, Yuji; Sasa, Toshinobu; Umeno, Makoto*; Saito, Shigeru; Nishihara, Kenji; Mizumoto, Motoharu; Takano, Hideki*; et al.

EUR-21227 (CD-ROM), p.483 - 493, 2005/00

JAERI is conducting the study on the dedicated transmutation system using the accelerator driven subcritical system (ADS). A subcritical reactor with the thermal power of 800 MW has been proposed. Many research and development activities including the conceptual design study are under way and planned at JAERI to examine the feasibility of the ADS. In the field of the proton accelerator, a superconducting LINAC is being developed. In the field of the spallation target using lead-bismuth eutectic (LBE), material corrosion, thermal-hydraulics, polonium behavior, and irradiation effect on materials are being studied. Moreover, in the framework of the J-PARC project, JAERI plans to construct the Transmutation Experimental Facility (TEF) to study the feasibility of the ADS using a high-energy proton beam and nuclear fuel and to establish the technology for the LBE spallation target and relevant materials.

Journal Articles

Research activities for accelerator-driven transmutation system at JAERI

Sasa, Toshinobu

Progress in Nuclear Energy, 47(1-4), p.314 - 326, 2005/00

 Times Cited Count:15 Percentile:69.89(Nuclear Science & Technology)

JAERI performs R&D of accelerator-driven systems (ADS) for transmutation of long-lived nuclides under national OMEGA program since 1988. To study the basic characteristics of ADS, Transmutation Experimental Facility is proposed under a framework of JAERI-KEK joint J-PARC project. A comprehensive R&D program for future ADS plant is also performed since 2002. R&D items are categorized into three fields, (1) accelerator (superconducting LINAC design), (2) lead-bismuth target/coolant (material compatibility, thermal-hydraulics around beam window and polonium behavior) and (3) subcritical core (system design, nuclear data, subcriticality measurement, and safety issues of ADS). First phase of the program will be done within three years. Assemble test of the cryomodule, heat transfer experiment using Pb-Bi thermal-hydraulics loop, cold test of polonium vaporization, design study of the 800MW ADS subcritical core are now underway. Part of this job was funded by the MEXT as one of the public offered R&D program for innovative nuclear systems.

Journal Articles

Research and development on accelerator-driven transmutation system at JAERI

Sasa, Toshinobu; Oigawa, Hiroyuki; Tsujimoto, Kazufumi; Nishihara, Kenji; Kikuchi, Kenji; Kurata, Yuji; Saito, Shigeru; Futakawa, Masatoshi; Umeno, Makoto*; Ouchi, Nobuo; et al.

Nuclear Engineering and Design, 230(1-3), p.209 - 222, 2004/05

 Times Cited Count:35 Percentile:88.18(Nuclear Science & Technology)

JAERI carries out research and development on accelerator-driven system (ADS) to transmute minor actinides and long-lived fission products. The system is composed of high intensity proton accelerator, lead-bismuth spallation target and lead-bismuth cooled subcritical core with nitride fuel. About 2,500 kg of minor actinide is loaded into the subcritical core. Annual transmutation amount using this system is 250 kg with 800MW of thermal output. A superconducting linear accelerator with the beam power of 30MW is connected to drive the subcritical core. Many research and development activities are under way and planned in the fields of subcritical core design, spallation target technology, lead-bismuth handling technology, accelerator development, and minor actinide fuel development. Especially, to study and evaluate the feasibility of the ADS from physics and engineering aspects, the Transmutation Experimental Facility (TEF) is proposed under a framework of the High-Intensity Proton Accelerator Project.

JAEA Reports

Proceedings of the International Symposium on Accelerator-driven Transmutation Systems and Asia ADS Network Initiative

Oigawa, Hiroyuki

JAERI-Conf 2003-012, 317 Pages, 2003/09

JAERI-Conf-2003-012.pdf:28.6MB

An International Symposium on "Accelerator-driven Transmutation Systems and Asia ADS Network Initiative" was held on March 24 and 25, 2003 to make participants acquainted with the current status and future plans for R&D of ADS in the world and to enhance the international collaboration in Asia. Current activities for R&D of ADS were presented from United States, Europe, Japan, Korea, and China. Activities in the fields of accelerator and nuclear physics were also presented. A panel discussion was organized with regard to the prospective international collaboration and multidisciplinary synergy effect, which are essential to manage various technological issues encountered in R&D stage of ADS. Through the discussion, common understanding was promoted concerning the importance of establishing international network.

Journal Articles

Research and development on accelerator-driven transmutation system at JAERI

Sasa, Toshinobu; Oigawa, Hiroyuki; Tsujimoto, Kazufumi; Nishihara, Kenji; Kikuchi, Kenji; Kurata, Yuji; Saito, Shigeru; Futakawa, Masatoshi; Umeno, Makoto*; Ouchi, Nobuo; et al.

Proceedings of 11th International Conference on Nuclear Engineering (ICONE-11) (CD-ROM), 9 Pages, 2003/04

JAERI carries out research and development on accelerator-driven system (ADS) to transmute minor actinides and long-lived fission products in high-level radioactive waste. The system is composed of high intensity proton accelerator, lead-bismuth spallation target and lead-bismuth cooled subcritical core with nitride fuel. About 2500 kg of minor actinide is loaded into the subcritical core. Annual transmutation amount using this system is 250 kg with 800MW of thermal output. A superconducting linear accelerator with the beam power of 20 - 30MW is connected to drive the subcritical core. The nitride fuel without uranium, such as (Np, Am, Pu)N, is selected. The fuel irradiated in the ADS is reprocessed by pyrochemical process followed by the re-fabrication of the fuel. Many research and development activities are under way. Especially, to study and evaluate the feasibility of the ADS from physics and engineering aspects, the Transmutation Experimental Facility (TEF) is proposed under a framework of the High-Intensity Proton Accelerator Project.

Journal Articles

Present status and perspective on nuclear transmutation, C; Accelerator driven transmutation system

Oigawa, Hiroyuki

Genshikaku Kenkyu, 47(6), p.39 - 52, 2003/03

Minor actinide (MA) and long-lived fission product (LLFP) keep their radiological toxicity in high level waste of nuclear fuel cycle for long period. In order to transmute such nuclides to short-lived or stable ones, the Accelerator-Driven Transmutation System (ADS) is proposed and developed. This article presents the current status of the research and development on ADS, technical issues to be solved, the experimental program under the framework of the High-Intensity Proton Accelerator Project (J-PARC), and worldwide activities.

Journal Articles

Conceptual design study of the transmutation experimental facilities

Sasa, Toshinobu; Oigawa, Hiroyuki; Kikuchi, Kenji; Ikeda, Yujiro

Proceedings of American Nuclear Society Conference "Nuclear Applications in the New Millennium" (AccApp-ADTTA '01) (CD-ROM), 7 Pages, 2002/00

A design study of the accelerator-driven system (ADS) for transmutation of minor actinides and long-lived fission products has been performed at Japan Atomic Energy Research Institute (JAERI) under the national OMEGA program. To solve the technical issues related to the ADS development, a transmutation experimental facility (TEF) is planned to bulid under the JAERI-High Energy Accelerator Research Organization joint project. The TEF consists of two facilities, Transmutation Physics Experimental Facility and Transmutation Engineering Experimental Facility. Proton beams of 600 MeV and 0.3 mA are to be delivered to this facility. The presentation describes a conceptual design study of the TEF.

Journal Articles

The Current status of R&D for accelerator-driven system at JAERI

Sasa, Toshinobu; Oigawa, Hiroyuki; Tsujimoto, Kazufumi; Nishihara, Kenji; Umeno, Makoto*; Takano, Hideki*

Proceedings of International Conference on Global Environment and Advanced Nuclear Power Plants (GENES4/ANP 2003) (CD-ROM), 8 Pages, 2000/09

Japan Atomic Energy Research Institute (JAERI) performs research and development for accelerator-driven transmutation systems to improve the environmental impact and increase a capacity of waste disposal plant. The system consists of a superconducting proton LINAC, Pb-Bi eutectic spallation target and Pb-Bi cooled subcritical core. Thermal output of the system is 800MW by injection of the proton beam with the power of 20 to 30MW and then, about 250kg of minor actinides can be transmuted annually. To study and evaluate the feasibility of ADS by a physical and an engineering viewpoint, the Transmutation Experimental Facility is proposed under a framework of J-PARC project. In the presentation, the R&D activities by the contract between the Ministry of Education, Culture, Sports, Science and Technology will be presented.

JAEA Reports

Mass balance of MA accumulation and transmutation in double strata transmutation system

Nishihara, Kenji; Ando, Yoshihira*; Takano, Hideki

JAERI-Research 99-074, p.24 - 0, 2000/01

JAERI-Research-99-074.pdf:1.05MB

no abstracts in English

24 (Records 1-20 displayed on this page)